Toward Optimality in Discrete Morse Theory

نویسندگان

  • Thomas Lewiner
  • Hélio Lopes
  • Geovan Tavares
چکیده

Morse theory is a fundamental tool for investigating the topology of smooth manifolds. This tool has been extended to discrete structures by Forman, which allows combinatorial analysis and direct computation. This theory relies on discrete gradient vector fields, whose critical elements describe the topology of the structure. The purpose of this work is to construct optimal discrete gradient vector fields, where optimality means having the minimum number of critical elements. The problem is equivalently stated in terms of maximal hyperforests of hypergraphs. Deduced from this theoretical result, a algorithm constructing almost optimal discrete gradient fields is provided. The optimal parts of the algorithm are proved, and the part of exponential complexity is replaced by heuristics. Although reaching optimality is MAX–SNP hard, the experiments on odd topological models are almost always optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Optimality in Discrete Morse Theory through Chain Homotopies

Once a discrete Morse function has been defined on a finite cell complex, information about its homology can be deduced from its critical elements. The main objective of this paper is to define optimal discrete gradient vector fields on general finite cell complexes, where optimality entails having the least number of critical elements. Our approach is to consider this problem as a homology com...

متن کامل

Constructing discrete Morse functions

Morse theory has been considered a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse ...

متن کامل

Towards optimality in discrete Morse theory

Morse theory is a fundamental tool for investigating the topology of smooth manifolds. This tool has been extended to discrete structures by Forman, which allows combinatorial analysis and direct computation. This theory relies on discrete gradient vector fields, whose critical elements describe the topology of the structure. The purpose of this work is to construct optimal discrete gradient ve...

متن کامل

Optimal discrete Morse functions for 2-manifolds

Morse theory is a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse theory. Once a Mo...

متن کامل

Homological optimality in Discrete Morse Theory through chain homotopies

0167-8655/$ see front matter 2012 Published by doi:10.1016/j.patrec.2012.01.014 ⇑ Corresponding author. E-mail address: [email protected] (H. Molina-Abril). Morse theory is a fundamental tool for analyzing the geometry and topology of smooth manifolds. This tool was translated by Forman to discrete structures such as cell complexes, by using discrete Morse functions or equivalently gradient vector f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2003